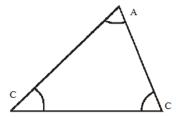
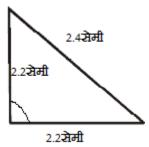
इकाई 13 त्रिभुज



- त्रिभुज के प्रकार
- त्रिभुज की रचना
- आकृतियों की सर्वांगसमता
- त्रिभुजों की सर्वांगसमता
- आकृतियों की समरूपता
- त्रिभुजों की समरूपता

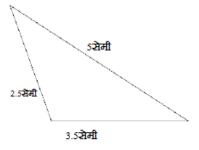
13.1 भूमिका :

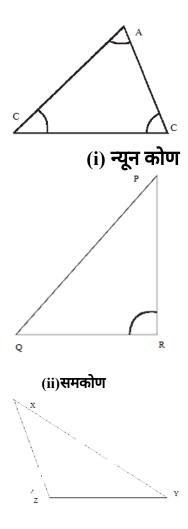
आप अब तक ज्यामितीय अवधारणा के अन्तर्गत ठोस वस्तुओं के फलक और उनके फलकों के चारों ओर पेंसिल घुमाने से बनने वाले आयत, वर्ग, वृत्त, त्रिभुज, इत्यदि आकृतियों से अवगत हो चुके हैं। आइए, हम त्रिभुज के विषय में विस्तार से जानें।


13.2 त्रिभुज:

जैसा कि आप चित्र में देख रहे हैं ABC एक त्रिभुज है जिसकी \overline{AB} , \overline{BC} , \overline{CA} तीन भुजाएँ, A,B,C तीन शीर्ष और \angle BCA, \angle ABC और \angle CAB तीन कोण हैं। अतः हम कह सकते हैं कि त्रिभुज, तीन रेखा खंडों से बनी एक बन्द सरल आकृति है, जिसके तीन शीर्ष, तीन भुजाएँ व तीन कोण होते हैं। इसे चिह्न ' \triangle 'द्वारा दर्शाते हैं।

आप पार्श्व में बने हुऐ चित्रों को देखें और भुजाओं की लम्बाई के आधार पर इनका वर्गीकरण करें।

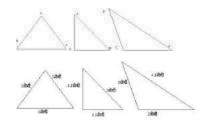

चित्र (i) में हम देखते हैं कि इस Δ की दो भुजाएँ बराबर हैं, परन्तु तीसरी भुजा की लम्बाई भिन्न है, इसलिए इस प्रकार के त्रिभुज को समद्विबाहु त्रिभुज कहते हैं।


चित्र (ii) को देखें और निष्कर्ष निकालें, इस त्रिभुज की तीनों भुजाएं बराबर है, अत: इसे समबाहु त्रिभुज कहते हैं।

चित्र (iii) पर विचार करें, इस त्रिभुज की भुजाओं की लम्बाई में कोई समानता नहीं हैं, इसलिए इस प्रकार के त्रिभुज को विषमबाहु त्रिभुज कहते हैं।

यहाँ हमने देखा कि भुजाओं की लम्बाइयों के अनुसार त्रिभुज तीन प्रकार के होते हैं। आप कोण और इसके प्रकार के विषय में अध्ययन कर चुके हैं। अब हम आगे देखेंगे कि कोण के आधार पर त्रिभुज को कितने प्रकार से वर्गीकृत कर सकते हैं। आइए निम्नांकित चित्रों की सहायता से जानें।

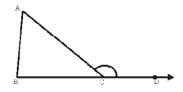
(iii) अधिक कोण


चित्र (i) में Δ ABC का प्रत्येक कोण न्यून कोण है, इस प्रकार के त्रिभुज को न्यून कोण त्रिभुज कहते हैं।

चित्र (ii) को देखें, इसमें ∠ QRP समकोण हैं, ऐसा त्रिभुज जिसका एक कोण समकोण है, समकोण त्रिभुज कहलाता है।

चित्र (iii) में $\angle XZY$ अधिक कोण है। अत: ऐसा त्रिभुज जिसका एक कोण अधिक कोण हो, अधिक कोण त्रिभुज कहलाता है।

प्रयास कीजिए


 $1. (i) \Delta ABC$ बनाकर इसके अवयवों के नाम लिखिए। $(ii) \angle A$ के सामने की भुजा को लिखिए। (iii) भुजा AC के सामने का कोण लिखिए।

2. त्रिभुजों का वर्गीकरण कीजिए -

सोचिए एवं कीजिए:

आइए अब हम Δ के अन्य कोणों के विषय में जाने Δ ABC की भुजा \overline{BC} को ब ढ़ाकर शीर्ष C पर बने कोण ACD परघ्यान दीजिए। यह कोण Δ के बर्हिभाग में स्थित है। इसे हम Δ ABC के शीर्ष C पर बना एक बाह्यकोण कहते हैं।

स्पष्ट है कि \angle BCA तथा \angle ACD परस्पर संलग्न कोण हैं। इसी प्रकार भुजा \overline{CA} तथा \overline{AB} , को ब ढ़ाकर क्रमश: कोण A और B के बाह्यकोणों को बना सकते हैं।

निष्कर्ष :

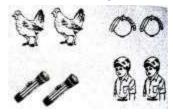
भुजाओं की दृष्टि से त्रिभुजों के प्रकार -

- वह त्रिभुज, जिसकी तीनों भुजाएँ समान हैं, समबाहु त्रिभुज कहलाता है।
- वह त्रिभुज, जिसकी केवल दो भुजाएं समान हैं, समद्विबाहु त्रिभुज कहलाता है।
- वह त्रिभुज, जिसकी कोई भुजाएँ समान नहीं हैं, विषमबाहु त्रिभुज कहलाता है।

कोणों की दृष्टि से त्रिभुजों के प्रकार -

- वह त्रिभुज जिसका एक कोण समकोण है, समकोण त्रिभुज कहलाता है।
- वह त्रिभुज, जिसका एक कोण अधिक कोण है, अधिक कोण त्रिभुज कहलाता है।
- वह त्रिभुज, जिसका प्रत्येक कोण न्यून कोण है, न्यून कोण त्रिभुज कहलाता है।

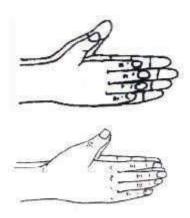
आपने विभिन्न ज्यामितीय आकृतियों को देखा और बनाया है। इस इकाई में आप एक बहुत ही महत्वपूर्ण ज्यामितीय संकल्पना सर्वांगसमता सीखने जा रहे हैं, जो विशेष कर त्रिभुजों की सर्वांगसमता से संबन्धित है।


चित्रों की सर्वांगसमता (तल - आकृतियों कीसर्वांगसमता) प्रयास कीजिए:

चित्रों को देखकर बताइए -

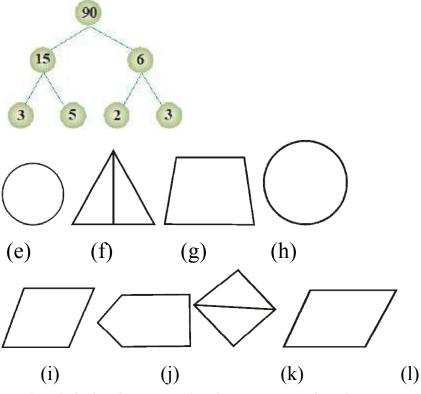
- (i) कौन-कौन से चित्र परस्पर आकृति (रूप) में समान हैं ?
- (ii) समान आकृति वाले चित्र क्याआकार (विस्तार) में भी परस्पर समान हैं ?

इन्हें कीजिए:


पार्श्वांकित आकृतियों को देखिए :

- 1.अपनी- अपनी एक हाथ की हथेली पर दूसरे हाथ की हथेली को इस प्रकार रखिए कि दोनों हाथ की हथेलियाँ एक दूसरे पर पूर्णत: आ जाएँ। क्याएक हथेली से दूसरी हथेली पूर्णत: ढॅक गई है ?
- 2. अपनी हथेली दूसरे सहपाठी की हथेली पर रखिए और देखिए कि एक हथेली दूसरे की हथेली से पूर्णत: ढॅकती है या नहीं।

हमने देखा कि अपने एक हाथ की हथेली से दूसरे हाथ की हथेली पूर्णत: ढॅक जाती है, जबिक एक शिक्षार्थी की हथेली से दूसरे शिक्षार्थी की हथेली पूर्णत: नहीं ढॅकती है। इसका क्याकारण है ?


एक ही शिक्षार्थी की दोनों हथेलियों की आकृतियाँ (रूप) एवं आकार समान होते हैं। इसलिए वे एक दूसरे को पूर्णत: ढॅक पाती है।

दो शिक्षर्थियों की हथेलियाँ आकृति में समान होती हैं, परन्तु उनके आकार भिन्न-भिन्न होते है। इसलिए वे एक दूसरे को पूर्णत: नहीं ढॅक पाती हैं।

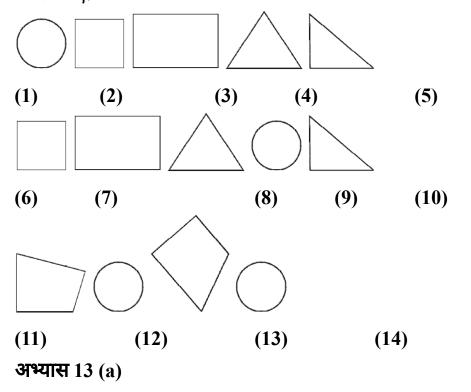
इन्हें कीजिए:

निम्नलिखित चित्रों कोघ्यान से देखिए और इन्हें ट्रेसिंग पेपर पर बनाइए और प्रत्येक चित्र को काटकर अलग कीजिए तथा एक दूसरे पर रखिए।

हम देखते हैं कि चित्र (a) और चित्र (g) आकृति और आकार में समान हैं। अत: चित्र (a), चित्र (g) पर रखने पर उसे पूर्णत ढॅक लेता है। इसी प्रकार चित्र (b), चित्र (k) को तथा चित्र (d), चित्र (f) को पूर्णत: ढॅक लेते हैं। चित्र (c) और चित्र (j)दोनों समान लगते हैं,

परन्तु वे एक दूसरे को पूर्णत: नहीं ढॅक सकते हैं। इसी प्रकार चित्र (e) चित्र (h) को और चित्र (i), चित्र (l) को पूर्णत: नहीं ढॅकते हैं।

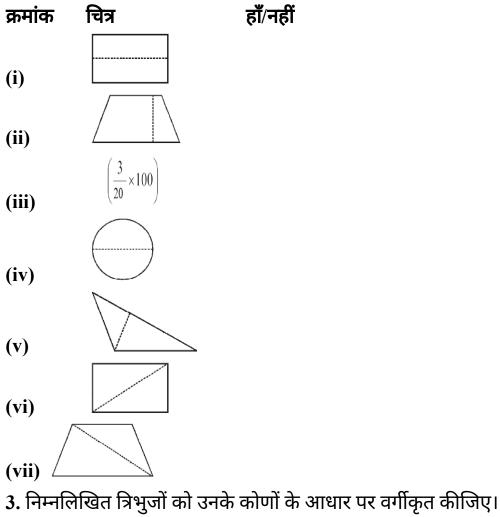
जब दो आकृतियाँ एक दूसरे को पूर्णत: ढॅक लेती हैं, तो उन आकृतियों को सर्वांगसम कहते हैं।

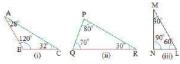

चिह्न "≅" को सर्वांगसम पढ़ते हैं।

ध्यान दें

- (i) दो रेखाखंड सर्वांगसम होते हैं, यदि उनकी लम्बाई समान है।
- (ii) यदि दो कोणों के माप समान हैं, तो वे सर्वांगसम होते हैं।
- (iii) दो वृत्त सर्वांगसम होते हैं, यदि उनकी त्रिज्याएँ समान हों।
- (iv) वे आकृतियाँ जो आकार (shape) और माप (Size) में समान होती हैं, सर्वांगसम होती हैं।

प्रयास कीजिए


कुछ आकृतियों के क्रमांक दिये गये हैं। सर्वांगसम आकृतियों के क्रमांक छाँटकर एक साथ लिखिए:



1.निम्नांकित चित्रों को काटिए, प्रत्येक को दो भागों में इस प्रकार मोड़िए कि दोनों भाग सर्वांगसम हो जाएं।

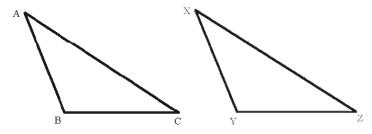
2. नीचे बने चित्रों को यदि बिन्दुदार रेखाओं पर दो भागों में मोड़ा जाए, तो प्रत्येक के दोनों भाग सर्वांगसम हैं या नहीं? अपनी अभ्यास पुस्तिका में प्रत्येक के समक्ष हाँ या नहीं में उत्तर लिखिए -

4. निम्नलिखित त्रिभुजों को उनके भुजाओं के आधार पर वर्गीकृत कीजिए।

5. नीचे दो रेखाखंड दिये गये हैं, दोनों रेखाखंड सर्वांगसम हैं। यदि AB = 4.5सेमी, तो CD की लम्बाई कितनी होगी?

A BC

- **6.** चित्र में A, B, C, D एक रेखा पर स्थित बिन्दु हैं। रेखाखंड CA = रेखाखंड BD , तो रेखाखंड CB और AD बराबर हैं या नहीं ?
- **7.** नीचे बने चित्र में ∠AOB = ∠COD, तो क्या ∠AOC = ∠BOD?


13.3 त्रिभुजों की सर्वांगसमता

इन्हें कीजिए :

अपनी अभ्यास पुस्तिका पर एक त्रिभुज ABC बनाइए। ट्रेसिंग पेपर पर इसी त्रिभुज की दूसरी अनुकृति \triangle XYZ बनाइए। इसे कैंची से काटकर \triangle ABC पर रखिए, और देखिए कि क्या वे एक दूसरे को ढक लेते हैं ? इस स्थिति में \angle A = \angle X, \angle B = \angle Y, \angle C = \angle Z, भुजा AB = भुजा XY, भुजा BC = भुजा YZ तथा भुजा AC = भुजा XZ हमने देखा कि दोनों त्रिभुज आकृति (रूप) और आकार (विस्तार) में समान हैं। ये त्रिभुज एक दूसरे के सर्वांगसम हैं।

- यदि दो त्रिभुज आकृति और आकार में समान हैं, तो वे सर्वांगसम होते हैं।
- यदि Δ_{ABC} और Δ_{XYZ} सर्वांगसम हैं तो उन्हें $\Delta_{ABC}\cong\Delta_{XYZ}$ लिखते हैं।
- वे शीर्ष,कोण और भुजाएँ जो एक दूसरे को पूर्ण रूप से ढक लेती हैं, क्रमश: संगत शीर्ष, संगत कोण और संगत भुजाएँ कहलाती हैं।

उपर्युक्त Δ ABC और Δ XYZ में संगत शीर्ष, संगत कोण और संगत भुजा बताइए।

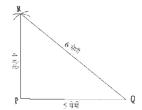
शीर्ष A का संगत शीर्ष X है, इसे $(A \leftrightarrow X)$ लिखते हैं। शीर्ष B का संगत शीर्ष Y है, इसे $(B \leftrightarrow Y)$ लिखते हैं। शीर्ष C का संगत शीर्ष Z है, इसे $(C \leftrightarrow Z)$ लिखते हैं।

 $\angle A$ का संगत कोण $\angle X$ है।

 $\angle B$ का संगत कोण $\angle Y$ है।

 $\angle C$ का संगत कोण $\angle Z$ है।

भुजा AB की संगत भुजा XYहै, इसे (AB \leftrightarrow XY) लिखते हैं। भुजा BC की संगत भुजा YZ है , इसे (BC \leftrightarrow YZ) लिखते हैं। भुजा AC की संगत भुजा XZ है, इसे (AC \leftrightarrow XZ) लिखते हैं।

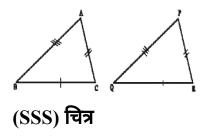

हमने देखा:

यदि △ABC ≅ △ XYZ तो उनके संगत कोण और संगत भुजाएं बराबर हैं। एक चित्र को काटकर दूसरे चित्र पर रखने की विधि को अध्यारोपण (Superposition) कहते हैं। इस विधि से दो दिये गये चित्रों की सर्वांगसमता और सर्वांगसम नहीं है, की जांच कर सकते हैं।

त्रिभुज की रचना जबकि तीनों भुजाएँ ज्ञात हों (SSS) : इन्हें ज्ञात कीजिए

एक त्रिभुज PQR की रचना कीजिए जिसकी भुजा PQ = 5 सेमी, QR = 6 सेमी, RP = 4 सेमी।

रचना:

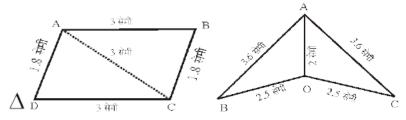

- रेखाखण्ड PQ = 5 सेमी खींचिए।
- परकार की सूई की नोक को भुजा PQ के बिन्दु Q पर रखकर 6 सेमी त्रिज्या का एक चाप लगाइए।
- इसी प्रकार RP = 4 सेमी के बराबर परकार से लम्बाई लीजिए।
- परकार की सूई की नोक को भुजा PQ के बिन्दु P पर रखकर एक चाप लगाइए।
- दोनों चाप एक दूसरे को जहाँ पर काटते हैं उसे बिन्दु R अंकित कीजिए।
- बिन्दु R को बिन्दु Q से और बिन्दु P से मिलाइए। यही अभीष्ट त्रिभुज PQR है।

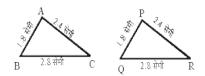
सर्वांगसमता की जाँच

क्रिया कलाप:

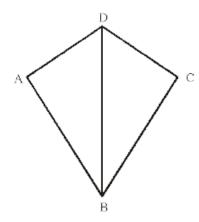
- त्रिभुज PQR के ऊपर ट्रेसिंग पेपर रखकर दूसरा त्रिभुज ABC बनाइए। दोनों त्रिभुजों △ PQR और △ABC को काटकर एक दूसरे पर रखिए और देखिए कि वे एक दूसरे को पूर्ण रूप से ढॅक लेते हैं या नहीं। त्रिभुज ABC की भुजाएँ नापिए और देखिए कि दोनों त्रिभुजों की भुजाओं में क्यासम्बन्ध है।
- कागज के एक पन्ने पर त्रिभुज $\triangle ABC$ बनाइए जिसमें AB = 5 सेमी, BC = 6.0 सेमी, और CA = 3 सेमी।
- दूसरा त्रिभुज△PQR बनाइए जिसमें PQ = 5 सेमी, QR = 6.0 सेमी, और RP= 3 सेमी।
- इन दोनों त्रिभुजों को काटकर अलग कीजिए।
- एक त्रिभुज को दूसरे त्रिभुज पर इस प्रकार रखिए कि भुजा AB भुजा PQ पर, भुजा BC भुजा QR पर और भुजा CA भुजा RP पर पड़े।
- क्याएक त्रिभुज ने दूसरे त्रिभुज को पूरा ढॅक लिया ?

यदि दोनों त्रिभुज एक दूसरे को पूरा-पूरा ढॅक लेते हैं, तो दोनों त्रिभुज सर्वांगसम होते हैं।

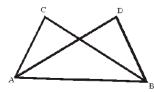



यदि एक त्रिभुज की तीनों भुजाएँ दूसरे त्रिभुज की संगत भुजाओं के बराबर हो, तो दोनों त्रिभुज सर्वांगसम होते हैं। इसे भुजा-भुजा-भुजा सर्वांगसमता अथवा संक्षेप में भु0 भु0 भु0 सर्वांगसमता कहते हैं। अत:

△ ABC≅ △ PQR

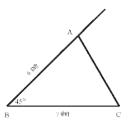

अभ्यास 13 (b)

- 1. एक त्रिभुज ABC खींचिए, जिसकी भुजा AB = 6 सेमी, भुजा BC = 8 सेमी और AC = 8 सेमी
- 2. निम्नांकित त्रिभुजों के जोड़े में भुजाओं के नाप अंकित हैं। भुजा-भुजा-भुजा सर्वांगसमता प्रतिबंध का प्रयोग करके बताइए, कौन त्रिभुज किस त्रिभुज के सर्वांगसम है, उत्तर को सांकेतिक भाषा में लिखिए।



- 3. पार्श्वांकित चित्र में AD = DC और AB = BC
- (i)क्या △ ABD ≅ △ CBD ?
- (ii)यदि △ABD ≅ △CBD, तो इसके संगत भुजाओं और संगत कोणों को लिखिए।

4. पार्श्वांकित चित्र में, △ABC और △ABD, एक ही भुजा AB पर बने त्रिभुज हैं। AC = BD तथा BC = AD है।

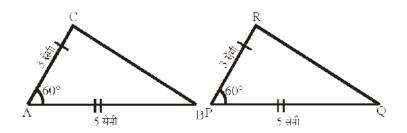


निम्नांकित कथन में कौन सत्य/असत्य हैं ?

- (i) △ ABC ≅ △ ABD
- $(ii) \triangle ABC \cong \triangle ADB$
- (iii) △ABC ≅ △ BAD

13.5 त्रिभुज की रचना जब कि दो भुजाएँ और उनके बीच का कोण ज्ञात हों : (SAS) एक त्रिभुज ABC खींचिए, जिसकी भुजा AB = 6 सेमी, भुजा BC = 7 सेमी और \angle B = 45°

रचना :

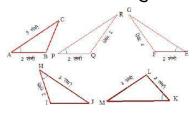


- 7 सेमी लम्बाई का रेखाखंड BC खींचिए।
- बिन्दु B पर चाँदा की सहायता से 45° का कोण बनाती हुई एक किरण खींचिए।
- इस किरण पर बिन्दु B से 6 सेमी की दूरी पर बिन्दु A पर चिह्न लगाइए।

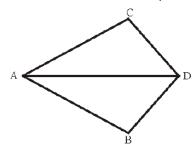
• बिन्दु A और C को मिलाइए यही 🛭 ABC अभीष्ट त्रिभुज है।

सर्वांगसमता की जाँच

इस त्रिभुज ABC पर ट्रेसिंग पेपर रखकर दूसरा त्रिभुज PQR बनाइए। A PQR को काटकर ABC पर रखिए और देखिए कि दोनों एक दूसरे को पूर्ण रूप से ढॅक लेते हैं या नहीं। दूसरे त्रिभुज PQR की भुजाएँ और बीच का कोण नापिए तथा देखिए कि दोनों त्रिभुजों की भुजाओं और बीच के कोण में क्या सम्बन्ध है ?

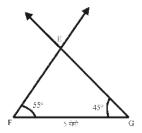


- एक \triangle ABC बनाइए जिसमें AC = 3.0 सेमी, AB = 5.0 सेमी, और \angle A= 60°
- एक दूसरा त्रिभुज \triangle PQR भी बनाइए जिसमें PQ = 5 सेमी, PR = 3 सेमी, और \angle P = 60
- इन त्रिभुजों को किटए और एक दूसरे पर रखिए। क्यादोनों त्रिभुजों ने एक-दूसरे को ढॅक लिया है ? यिद दोनों त्रिभुज एक दूसरे को पूर्णत: ढॅक लेते हैं, तो दोनो त्रिभुज सर्वांगसम हैं। $\Delta_{ABC}\cong\Delta_{PQR}$


यदि दो त्रिभुजों की दो संगत भुजाएँ और उनके बीच के कोण समान हों, तो दोनों त्रिभुज सर्वांगसम होते हैं। इसे भुजा-कोण-भुजा सर्वांगसमता रुरुभु0 को0 भु0" सर्वांगसमता कहते हैं।

अभ्यास 13 (c)

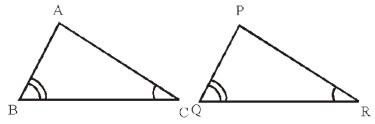
1. चित्र में दो त्रिभुज आपस में सर्वांगसम है, उन्हें छाँट कर सांकेतिक भाषा में लिखिए :


- **2.** एक त्रिभुज $\triangle ABC$ की रचना कीजिए जिसमें AB = 6 सेमी, AC = 6 सेमी और $\angle A = 90^\circ$, त्रिभुज XYZ की रचना कीजिए जिसमें XY = 6 सेमी $\angle X = 90^\circ$ और $\angle Y = 45^\circ$, क्या दोनों त्रिभुज सर्वांगसम हैं ?
- **3.** पार्श्कित चित्र में AB = AC और $\angle DAB = \angle CAD$ lees क्या $\triangle ABD$ और $\triangle ADC$ सर्वांगसम हैं ? यदि हैं तो क्यों ?

4. एक त्रिभुज ABC की रचना कीजिए जिसमें AC = 4.5 सेमी, BC= 6 सेमी और \angle C= 60°

13.6 त्रिभुज की रचना जबकि दो कोण और संगत भुजा ज्ञात हों (ASA)

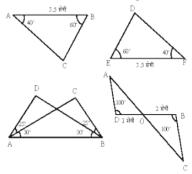
△EFG की रचना कीजिए जिसमें FG = 5 सेमी, ∠F= 55° और ∠G= 45° हो **रचना**:

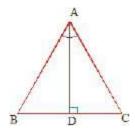

5 सेमी लम्बाई का रेखाखंड FG खीचिए। बिन्दु F से 55° का कोण बनाती हुए एक किरण खीचिए। बिन्दु G से 45° का कोण बनाती हुए दूसरी किरण खीचिए। दोनों किरण एक दूसरे को बिन्दु E पर काटती हैं। △EFGअभीष्ट त्रिभुज है।

सर्वांगसमता की जाँच:

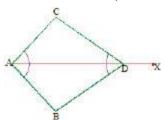
क्रिया कलाप:

इस त्रिभुज पर ट्रेसिंग पेपर रखकर दूसरा \triangle ABC बनाइए। \triangle ABC को काटकर \triangle EFG पर रखिए, और देखिए कि क्या दोनों त्रिभुजों ने एक दूसरे को पूर्ण रूप से ढक लिया है ? दूसरे त्रिभुज ABC की भुजा BC तथा \angle B और \angle C को नापिए और देखिए कि दोनों त्रिभुजों की भुजा FG और BC, कोणों \angle F और \angle B तथा \angle G और \angle C में क्या सम्बन्ध है ?


एक त्रिभुज ABC बनाइए जिसकी भुजा BC = 5.0 सेमी \angle B = 45° , \angle C = 30° एक दूसरा त्रिभुज PQR बनाइए, जिसकी भुजा QR= 5 सेमी, \angle Q = 45° \angle R = 30° \triangle ABC को काटकर \triangle PQR पर रखिए यदि त्रिभुज \triangle ABC ने \triangle PQR को पूरा - पूरा ढक लिया तो \triangle ABC और \triangle PQR त्रिभुज सर्वांगसम हैं। \triangle ABC \cong \triangle PQR

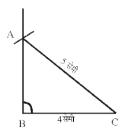

यदि एक त्रिभुज के दो कोण और एक भुजा दूसरे त्रिभुज के दो कोण और संगत भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते है। इसे को0 भु0 को0 (A.S.A.)सर्वांगसमता कहते है।

अभ्यास 13 (d)


1.निम्नलिखित त्रिभुजों में कौन - सा त्रिभुज किस त्रिभुज के सर्वांगसम है :

2. चित्र में AD, \angle A की अर्धक है, तथा AD \perp BC

- (i) क्या △ ADB \cong △ ADC ?
- (ii)क्या यह कहना सही है कि BD = DC?
- **3.** चित्र में रेखा AX, $\angle CAB$ और $\angle BDC$ को समद्विभाजित करती है। उन तीन तथ्यों को बताइए जो यह सिद्ध करें कि

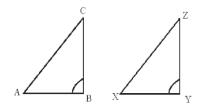


- $\triangle ABD \cong \cong \triangle ACD$
- 4. त्रिभुज ABC की रचना कीजिए, जिसकी भुजा AC = 6 सेमी, \angle A = 60° और \angle C = 45°
- 13.7 समकोण त्रिभुज की रचना करना जब कि इसका कर्ण व एक भुजा ज्ञात हो (R.H.S.):

इन्हें कीजिए :

समकोण $\triangle ABC$ की रचना कीजिए, जिसकी भुजा BC = 4 सेमी, कर्ण AC = 5 सेमी और $\angle B = 90^\circ$

रचना



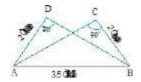
• 4 सेमी लम्बाई का रेखाखंड BC खींचिए।

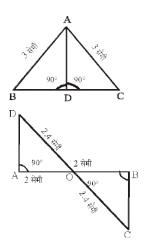
- बिन्दु B पर 90° का कोण बनाती हुई किरण खींचिए।
- AC = 5 सेमी के बराबर परकार में लम्बाई लीजिए।
- परकार के सूई की नोक को भुजा BC के बिन्दु C पर रखकर एक चाप लगाइए।
- यह चाप 90° का कोण बनाने वाली रेखा को जिस बिन्दु पर काटे उसे बिन्दु A लिखिए।
- बिन्दु C को बिन्दु A से मिलाइए। \triangle ABC अभीष्ट त्रिभुज है।

सर्वांगसमता की जाँच

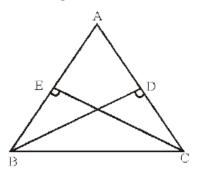
प्रयास कीजिए

एक △ABC बनाइए।इस त्रिभुज पर ट्रेसिंग पेपर रखकर दूसरा △ABC बनाइए।△ ABC को काट कर △ ABC पर रखिए और देखिए कि क्या दोनों त्रिभुज एक दूसरे को पूर्ण रूप से ढॅक लेते हैं ? दोनों त्रिभुजों की भुजाओं को निपये और देखिये कि दोनों त्रिभुज की भुजाओं में क्या सम्बन्धहै ?


एक समकोण त्रिभुज \triangle खीचिए, जिसमें कर्ण AC = 7 सेमी, \angle B = 90°, भुजा AB = 4 सेमी एक दूसरा त्रिभुज XYZ खीचिए, जिसमें कर्ण XZ= 7 सेमी भुजा ZY = 4 सेमी, \angle Y = 90°।


इसकी सर्वांगसमता का परीक्षण कीजिए।

यदि एक समकोण त्रिभुज का कर्ण और एक भुजा, दूसरे समकोण त्रिभुज के कर्ण और एक भुजा के बराबर हो, तो दोनों त्रिभुज सर्वांगसम होते है। इसे समकोण -कर्ण- भुजा (R.H.S.) सर्वांगसमता कहते हैं।


अभ्यास 13(e)

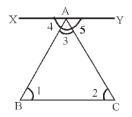
1.नीचे कुछ त्रिभुज के जोड़े दिये गये हैं। उनकी नाप भुजाओं के साथ लिख दी गई है। रुसमकोण -कर्ण - भुजा' सर्वांगसमता का प्रयोग करके बताइए कि कौन-कौन से त्रिभुज सर्वांगसम हैं ? परिणाम को सांकेतिक रूप में लिखिए।

2. BD और CE, \triangle ABC की भुजाओं AC और AB पर क्रमश: लम्ब खींचे गये हैं और BD = CE

- (i) क्या \triangle DBC \cong \triangle ECB ?
- (ii) भुजा EB और भुजा CD में क्या सम्बन्ध होगा ?
- 3. उस प्रतिबन्ध को अभ्यास पुस्तिका पर लिखिए जबिक दो समकोण त्रिभुज सर्वांगसम होंगे।

त्रिभुज के तीनों कोणों का योगफल इसे कीजिए तथा निष्कर्ष निकलिए: कोई तीन त्रिभुज $\triangle ABC$, $\triangle DEF$ और $\triangle PQR$ बनाइए, इसके कोणों को किसी भी क्रम में $\angle 1$, $\angle 2$, $\angle 3$ से प्रदर्शित कीजिए। प्रत्येक त्रिभुज के कोणों को नापिए और उनके योग कीजिए तथा अपनी अभ्यास पुस्तिका में निम्नलिखित सरिणी को पूरा कीजिए।

त्रिभुज	कोणों के नाप			योग
	∠1	∠2	∠3	∠1 + ∠2 + ∠3
ABC				
DEF				
PQR				


निष्कर्ष:

हमने देखा त्रिभुज के तीनोंअन्त: कोणों का योगफल 180° होता है।

त्रिभुज के तीनों अन्त: कोणों का योगफल 180° होता है, इसका सत्यापन निम्न प्रकार से भी कीजिए।

एक △ABC बनाइए। बिन्दु A से BC || XYखींचिए।

चित्रानुसार कोणों को 1, 2, 3, 4 और 5 से प्रदर्शित कीजिए।

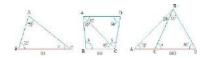
$$\angle 4 = \angle 1$$
 (क्यों)

$$\angle 5 = \angle 2$$
 (क्यों)

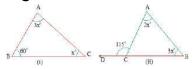
$$\angle 3 = \angle 3$$
 (क्यों)

दोनों पक्षों को जोड़िए।

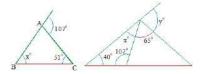
हमने देखा


$$\angle 1 + \angle 2 + \angle 3 = \angle 4 + \angle 3 + \angle 5 = 180^{\circ}$$

या
$$\angle A + \angle B + \angle C = 180^{\circ}$$

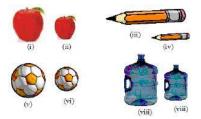

त्रिभुज के तीनों अन्त: कोणों का योगफल 180° होता है।

अभ्यास 13(f)


1. निम्नलिखित प्रश्नों में x, y, z का मान निकालिये

2. चित्रानुसार x का मान ज्ञात कीजिए।

3. निम्नलिखित में x, y का मान ज्ञात कीजिए।


- **4.** त्रिभुज ABC में $\angle B=72^{\circ}$, $\angle B=64^{\circ}$, $\angle A$ को ज्ञात कीजिए।
- 5. यदि किसी त्रिभुज की कोणों में अनुपात 3:4:5 हो, तो कोणों को ज्ञात कीजिए।

समरूपता की अवधारणा

आपने पढ़ा कि दो सर्वांगसम आकृतियाँ, समान आकृति (shape) और समान माप (size) की होती हैं। प्रकृति में कुछ ऐसी आकृतियाँ है जो आकृति में समान रूप की होती है किन्तु समान माप की नहीं होती।

निम्नलिखित चित्रों को ध्यान से देखें।

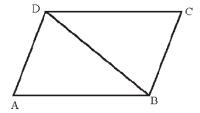
चित्र (i), (ii) में देखते हैं कि दोनों चित्र सेव के है परन्तु दोनों आकार में भिन्न-भिन्न है। इसी प्रकार चित्र (iii), (iv) में देखते हैं कि दोनों चित्र पेंसिल के हैं। परन्तु दोनों आकार में भिन्न-भिन्न है।

चित्र (v), (vi) में देखते हैं कि दोनों चित्र पुâटबॉल के हैं परन्तु दोनों आकार में भिन्न-भिन्न है। चित्र (vi), (viii) में देखते हैं कि दोनों चित्र बोतल के है परन्तु दोनों आकार में भिन्न है। अत: हम इस निष्कर्ष पर पहुँचते हैं कि उपर्युक्त चित्रों के जोड़े रूप में समान है परन्तु आकार में भिन्न हैं।

ऐसी आकृतियाँ, जो रूप में समान होते हैं, समरूप आकृतियाँ (similar shapes) कहलाती हैं।

निम्नलिखित को देखें और बताइये कि उसमें क्या सम्बन्ध है ?

- १. किसी हॉकी के दो भिन्न आकार के चित्रों को ?
- २. किसी पेड़ के दो भिन्न आकार के चित्रों को ?
- इम देखते हैं कि सभी चित्रों की आकृतियाँ एक सी है परन्तु आकार भिन्न-भिन्न है।
 ध्यान दें -

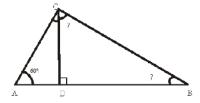

दो सर्वांगसम आकृतियाँ समरूप होती है, परन्तु यह आवश्यक नहीं है कि दो समरूप आकृतियाँ सर्वांगसम हो।

प्रयास कीजिए

तीन समबाहु त्रिभुज खीचिये जिनकी भुजाए 3.0 सेमी, 4.0 सेमी एवं 5.0 सेमी। बताइये कि तीनों त्रिभुज समरूप होंगे या सर्वांगसम होंगे।

दक्षता अभ्यास13

1. चित्र में $\triangle ABD \cong \triangle CDB$ को देखकर निम्नांकित वैकल्पिक उत्तरों में सही उत्तर छाँटकर अभ्यास पुस्तिका पर लिखिए।



- (i) ∠A का संगत कोण है -
- (i) $\angle A$ (ii) $\angle D$ (iii) $\angle C$
- (ii) भुजा AB की संगत भुजा है :
- (i) CD (ii) AD (iii) BC
- (iii) AD की संगत भुजा है :
- (i) CB (ii) CD (iii) BA
- (iv) DB की संगत भुजा है:
- (i) BD (ii) DC (iii) BC

- 2. यदि कक्षा 6 के सभी शिक्षार्थी 4 सेमी, 5 सेमी और 6 सेमी भुजा वाले एक त्रिभुज की रचना करें, तो क्याबनने वाले सभी त्रिभुज सर्वांगसम होंगे ?
- 3. यदि $\triangle ABC \cong \triangle PQR$ तथा AB = 3.2 सेमी, BC = 5 सेमी और CA = 7 सेमी हों, तो $\triangle PQR$ की भुजाओं की नाप लिखिए।
- 4. एक त्रिभुज की तीनों भुजाएँ दूसरे त्रिभुज की तीनों संगत भुजाओं के बराबर हैं, क्या दोनों त्रिभुज सर्वांगसम हैं ?
- **5.** एक त्रिभुज के तीनों कोण दूसरे त्रिभुज के तीनों कोणों के बराबर हों, तो क्या दोनों त्रिभुज स दैव सर्वांगसम होते हैं ?
- **6.** एक त्रिभुज का एक कोण 130° का है, शेष दो कोण आपस में बराबर हैं। इन दोनों कोणों की माप ज्ञात कीजिए।
- 7. एक समकोण त्रिभुज के दो कोण बराबर हैं, दोनों कोण कितने-कितने अंश के हैं ?
- **8.**पार्श्वांकित चित्र में बिन्दु D, E, त्रिभुज ABC की भुजा AB और AC पर इस प्रकार स्थित हैं कि DE \parallel BC, यदि \angle B = 30°, \angle A = 40° तो कोण x,y,z और के मान ज्ञात कीजिए।

9. पार्श्वांकित चित्र में $\angle C$ समकोण है। $CD \perp AB$ है। $\angle A = 65^\circ$, तो निम्नांकित कोणों के मान ज्ञात कीजिए।

- (i) ∠ACD
- (ii)∠BCD
- (iii) ∠CBD

विशेष प्रश्न : एक त्रिभुज का क्षेत्रफल उस वर्ग के बराबर है जिसकी भुजा 25 मीटर है। त्रिभुज के उस भुजा की लम्बाई ज्ञात कीजिए जो शीर्ष बिन्दु से 10 मीटर दूर है : N.T.S.2009

- (1) 25 मीटर
- (2) 55 मीटर
- (3) 125 मीटर
- (4) 75 मीटर (3) 125 मीटर

इस इकाई में हमने क्या सीखा:

- 1. रेखाखण्डों से बनी बन्द आकृति को बहुभुज कहते हैं।
- 2. वह बहुभुज जो तीन रेखाखंडों से बना हो, त्रिभुज कहलाता है।
- त्रिभुज सबसे कम भुजाओं वाला बहुभुज है।
- जब दो आकृतियाँ एक दूसरे को पूर्णत: ढ़क लेती हैं, तो वे आकृतियाँ सर्वांगसम होती है।
- वे आकृतियाँ जो आकार और माप में समान होती हैं, सर्वांगसम होती है।
- दो रेखाखंड सर्वांगसम होते हैं, यदि उनकी लम्बाई समान है।
- 7. यदि दो कोणों के माप समान हैं, तो वे सर्वांगसम होते है।
- 8 यदि दो त्रिभुज आकृति और आकार में समान हैं, तो वे सर्वांगसम होते हैं।
- 9. यदि △ABC और 3△XYZ सर्वांगसम हैं तो उन्हें $△ABC \cong △XYZ$ लिखते है।
- 10. सर्वांगसम त्रिभुजों के शीर्ष, कोण और भुजाएं जो एक दूसरे को पूर्ण रूप से ढंक लेती हैं, क्रमश: संगत शीर्ष, संगत कोण और संगत भुजाएं कहलाती है।
- 11. यदि एक त्रिभुज की तीनों भुजाएं दूसरे त्रिभुज की संगत भुजाओं के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते है। संक्षेप में इसे भु0 भु0 भु0 (SSS)सर्वांगसमता कहते हैं।
- 12. यदि दो त्रिभुजों की दो संगत भुजाएं और उनके बीच के कोण समान हों, तो दोनों त्रिभुज सर्वांगसम होते हैं। इसे भु0 को0 भु0 (SAS) सर्वांगसमता कहते है।

- 13. यदि एक त्रिभुज के दो कोण और एक भुजा दूसरे त्रिभुज के दो कोण और संगत भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं। इसे को0 भु0 को0 (ASA) सर्वांगसमता कहते हैं।
- 14. यदि एक समकोण त्रिभुज का कर्ण और एक भुजा दूसरे समकोण त्रिभुज के कर्ण और एक भुजा के बराबर हो, तो दोनों त्रिभुज सर्वांगसम होते हैं। इसे स0क0भु0 (RHS) सर्वांगसमता कहते हैं।
- 15. त्रिभुज के तीनोंअन्त: कोणों का योगफल 180° होता है।
- सभी सर्वांगसम त्रिभुज समरूप होते हैं, लेकिन समरूप त्रिभुज सर्वांगसम नहीं होते हैं।

उत्तरमाला

अभ्यास 13 (a)

- 2. (i)हाँ (ii) नहीं (iii)हाँ (iv) हाँ (v) नहीं (vi) हाँ (vii) नहीं
- 3.(i) अधिक कोण (ii) न्यून कोण (iii) सम कोण
- 4.(i) समद्विबाहु (ii) विषमबाहु (iii) विषमबाहु (iv)समबाहु
- 5.CD = 4.5 सेमी, 2. हाँ, 3. हाँ

अभ्यास 13 (b)

 $1.\Delta$ ABC \cong Δ CDA, Δ AOB \cong Δ AOC, Δ ABC \cong Δ PQR, 2. (i)हाँ (ii) AD \leftrightarrow CD, AB \leftrightarrow CB, DB \leftrightarrow DB, <A \leftrightarrow <C, <CBD \leftrightarrow <ABD, <CDB \leftrightarrow <ADB; 3. (iii) सत्य

अभ्यास 13 (c)

 $1.\Delta$ ABC $\cong \Delta$ HIJ, Δ PQR $\cong \Delta$ EFG $\cong \Delta$ KLM, 2. हाँ; 3. हाँ

अभ्यास 13 (d)

 $1.\Delta$ ABC \cong Δ FED, Δ ADB \cong Δ BCA, Δ ADO \cong Δ CBO, 2. (i)हाँ , (ii)हाँ ; 3.AB=AC,BD=CD और AD उभयनिष्ठ

अभ्यास 13 (e)

 $1.\Delta~ABC\cong\Delta~BAD, \Delta~ADB\cong\Delta~ADC, \Delta~AOD\cong\Delta~BOC; 2.$ हाँ, बराबर है अभ्यास 13(f)

1. (i)
$$z = 380$$
 (ii) $x = 950$, $y = 500$ (iii) $x = 650$

2. (i) x = 300 (ii) x = 230

3. (i) x = 500 (ii) x = 330, y = 820

4. (i) 440 5. 450, 600, 750

दक्षता अभ्यास 13

1.(i)<C (ii) भुजा CD (iii) भुजा BC (iv) भुजा BD 2.हाँ 3. PQ = 3.2 सेमी, QR = 5 सेमी, PR= 7 सेमी 4.हाँ 5. नहीं 6. 25°, 25° 7. 45°, 45°, 8.x = 30°, y = z = 110° 9. (i)25° (ii)65° (iii) 25°